78 research outputs found

    Sp1 and KLF15 regulate basal transcription of the human LRP5 gene

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>LRP5, a member of the low density lipoprotein receptor superfamily, regulates diverse developmental processes in embryogenesis and maintains physiological homeostasis in adult organisms. However, how the expression of human <it>LRP5 </it>gene is regulated remains unclear.</p> <p>Results</p> <p>In order to characterize the transcriptional regulation of human <it>LRP5 </it>gene, we cloned the 5' flanking region and evaluated its transcriptional activity in a luciferase reporter system. We demonstrated that both KLF15 and Sp1 binding sites between -72 bp and -53 bp contribute to the transcriptional activation of human <it>LRP5 </it>promoter. Chromatin immunoprecipitation assay demonstrated that the ubiquitous transcription factors KLF15 and Sp1 bind to this region. Using <it>Drosophila </it>SL2 cells, we showed that KLF15 and Sp1 trans-activated the <it>LRP5 </it>promoter in a manner dependent on the presence of Sp1-binding and KLF15-binding motifs.</p> <p>Conclusions</p> <p>Both KLF15 and Sp1 binding sites contribute to the basal activity of human <it>LRP5 </it>promoter. This study provides the first insight into the mechanisms by which transcription of human <it>LRP5 </it>gene is regulated.</p

    Replication Stress Induces Micronuclei Comprising of Aggregated DNA Double-Strand Breaks

    Get PDF
    BACKGROUND: Micronuclei (MN) in mammalian cells serve as a reliable biomarker of genomic instability and genotoxic exposure. Elevation of MN is commonly observed in cells bearing intrinsic genomic instability and in normal cells exposed to genotoxic agents. DNA double-strand breaks are marked by phosphorylation of H2AX at serine 139 (Ξ³-H2AX). One subclass of MN contains massive and uniform Ξ³-H2AX signals. This study tested whether this subclass of MN can be induced by replication stress. PRINCIPAL FINDINGS: We observed that a large proportion of MN, from 20% to nearly 50%, showed uniform staining by antibodies against Ξ³-H2AX, a marker of DNA double-strand breaks (DSBs). Such micronuclei were designated as MN-Ξ³-H2AX (+). We showed that such MN can be induced by chemicals that are known to cause DNA replication stress and S phase arrest. Hydroxyurea, aphidicolin and thymidine could all significantly induce MN-Ξ³-H2AX (+), which were formed during S phase and appeared to be derived from aggregation of DSBs. MN-Ξ³-H2AX (-), MN that were devoid of uniform Ξ³-H2AX signals, were induced to a lesser extent in terms of fold change. Paclitaxel, which inhibits the disassembly of microtubules, only induced MN-Ξ³-H2AX (-). The frequency of MN-Ξ³-H2AX (+), but not that of MN-Ξ³-H2AX (-), was also significantly increased in cells that experience S phase prolongation due to depletion of cell cycle regulator CUL4B. Depletion of replication protein A1 (RPA1) by RNA interference resulted in an elevation of both MN-Ξ³-H2AX (+) and MN-Ξ³-H2AX (-). CONCLUSIONS/SIGNIFICANCE: A subclass of MN, MN-Ξ³-H2AX (+), can be preferentially induced by replication stress. Classification of MN according to their Ξ³-H2AX status may provide a more refined evaluation of intrinsic genomic instabilities and the various environmental genotoxicants

    A functional polymorphism in the SPINK5 gene is associated with asthma in a Chinese Han Population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Mutation in <it>SPINK5 </it>causes Netherton syndrome, a rare recessive skin disease that is accompanied by severe atopic manifestations including atopic dermatitis, allergic rhinitis, asthma, high serum IgE and hypereosinophilia. Recently, single nucleotide polymorphism (SNP) of the <it>SPINK5 </it>was shown to be significantly associated with atopy, atopic dermatitis, asthma, and total serum IgE. In order to determine the role of the <it>SPINK5 </it>in the development of asthma, a case-control study including 669 asthma patients and 711 healthy controls in Han Chinese was conducted.</p> <p>Methods</p> <p>Using PCR-RFLP assay, we genotyped one promoter SNP, -206G>A, and four nonsynonymous SNPs, 1103A>G (Asn368Ser), 1156G>A (Asp386Asn), 1258G>A (Glu420Lys), and 2475G>T (Glu825Asp). Also, we analyzed the functional significance of -206G>A using the luciferase reporter assay and electrophoresis mobility shift assay.</p> <p>Results</p> <p>we found that the G allele at SNP -206G>A was associated with increased asthma susceptibility in our study population (p = 0.002, odds ratio 1.34, 95% confidence interval 1.11–1.60). There was no significant association between any of four nonsynonymous SNPs and asthma. The A allele at -206G>A has a significantly higher transcriptional activity than the G allele. Electrophoresis mobility shift assay also showed a significantly higher binding efficiency of nuclear protein to the A allele compared with the G allele.</p> <p>Conclusion</p> <p>Our findings indicate that the -206G>A polymorphism in the <it>SPINK5 </it>is associated with asthma susceptibility in a Chinese Han population.</p

    The 5th International Conference on Biomedical Engineering and Biotechnology (ICBEB 2016)

    Get PDF

    Lack of Cul4b, an E3 Ubiquitin Ligase Component, Leads to Embryonic Lethality and Abnormal Placental Development

    Get PDF
    Cullin-RING ligases (CRLs) complexes participate in the regulation of diverse cellular processes, including cell cycle progression, transcription, signal transduction and development. Serving as the scaffold protein, cullins are crucial for the assembly of ligase complexes, which recognize and target various substrates for proteosomal degradation. Mutations in human CUL4B, one of the eight members in cullin family, are one of the major causes of X-linked mental retardation. We here report the generation and characterization of Cul4b knockout mice, in which exons 3 to 5 were deleted. In contrast to the survival to adulthood of human hemizygous males with CUL4B null mutation, Cul4b null mouse embryos show severe developmental arrest and usually die before embryonic day 9.5 (E9.5). Accumulation of cyclin E, a CRL (CUL4B) substrate, was observed in Cul4b null embryos. Cul4b heterozygotes were recovered at a reduced ratio and exhibited a severe developmental delay. The placentas in Cul4b heterozygotes were disorganized and were impaired in vascularization, which may contribute to the developmental delay. As in human CUL4B heterozygotes, Cul4b null cells were selected against in Cul4b heterozygotes, leading to various degrees of skewed X-inactivation in different tissues. Together, our results showed that CUL4B is indispensable for embryonic development in the mouse

    Berberine Radiosensitizes Human Esophageal Cancer Cells by Downregulating Homologous Recombination Repair Protein RAD51

    Get PDF
    Esophageal squamous cell carcinomas (ESCC) have poor prognosis. While combined modality of chemotherapy and radiotherapy increases survival, most patients die within five years. Development of agents that confer cancer cell-specific chemo- and radiosensitivity may improve the therapy of ESCC. We here reported the discovery of berberine as a potent radiosensitizing agent on ESCC cells. by RNA interference similarly radiosensitized the cancer cells, and, conversely, introduction of exogenous RAD51 was able to significantly counteract the radiosensitizing effect of berberine, thus establishing RAD51 as a key determinant in radiation sensitivity. We also observed that RAD51 was commonly overexpressed in human ESCC tissues, suggesting that it is necessary to downregulate RAD51 to achieve high radio- or chemotherapeutic efficacy of ESCC in clinic, because overexpression of RAD51 is known to confer radio- and chemoresistance.Berberine can effectively downregulate RAD51 in conferring radiosensitivity on esophageal cancer cells. Its clinical application as an adjuvant in chemotherapy and radiotherapy of esophageal cancers should be explored

    WISP3, the Gene Responsible for the Human Skeletal Disease Progressive Pseudorheumatoid Dysplasia, Is Not Essential for Skeletal Function in Mice

    No full text
    In humans, loss-of-function mutations in WISP3 cause the autosomal recessive skeletal disease progressive pseudorheumatoid dysplasia (PPD) (Online Mendelian Inheritance in Man database number 208230). WISP3 encodes Wnt1-inducible signaling protein 3, a cysteine-rich, multidomain, secreted protein, whose paralogous CCN (connective tissue growth factor/cysteine-rich protein 61/nephroblastoma overexpressed) family members have been implicated in diverse biologic processes including skeletal, vascular, and neural development. To understand the role of WISP3 in the skeleton, we targeted the Wisp3 gene in mice by creating a mutant allele comparable to that which causes human disease. We also created transgenic mice that overexpress human WISP3 in cartilage. Surprisingly, homozygous Wisp3 mutant mice appear normal and do not recapitulate any of the morphological, radiographic, or histological abnormalities seen in patients with PPD. Mice that overexpress WISP3 are also normal. We conclude, that in contrast to humans, Wisp3 is not an essential participant during skeletal growth or homeostasis in mice

    Association of genetic variants in chromosome 17q21 and adult-onset asthma in a Chinese Han population

    No full text
    Abstract Background Genome-wide association studies of asthma have identified a novel region containing ORMDL3 at chromosome 17q21 that is strongly associated with childhood-onset asthma and significantly linked to ORMDL3 transcript abundance. These results have been successfully replicated in childhood-onset asthma cohorts in several ethnic groups. In this study, we aimed to evaluate the association of polymorphisms in ORMDL3, GSDMB, ZPBP2 and IKZF3 and adult-onset asthma in a Chinese Han population. Methods We genotyped 5 single nucleotide polymorphisms (SNPs) at chromosome 17q21 in 1,366 Han Chinese people comprising 710 patients with adult-onset asthma and 656 healthy controls. We compared the 2 groups in terms of allele and haplotype frequencies. Transcript levels were measured in leukocytes from 61 asthma patients by quantitative real-time PCR. Results We found the 5 SNPs significantly associated with asthma (PORMDL3 and GSDMB in leukocytes (all p Conclusions Our replication study suggests that variants in 17q21 are significantly associated with risk of adult-onset asthma and gene expression in a Chinese Han population.</p

    Association study between vitamin D receptor gene polymorphisms and asthma in the chinese han population: a case-control study

    No full text
    Abstract Background Modulation of the immune system is one of the principal roles of Vitamin D, for which the effects are exerted via the vitamin D receptor (VDR). Importantly, variants in the VDR gene have been susceptible in the past to raise the risk of asthma in several populations. These effects of VDR allelic markers remain speculative in the Chinese Han population. Results A case-control study of 1090 individuals including 567 asthmatic patients was realized on five SNPs within the VDR gene. Only rs7975232 (ApaI) marker showed a significant association with asthma (P = 0.009). Haplotype analysis of the five VDR polymorphisms showed a significant association with asthma (global-p value = 0.012). Conclusion Although the susceptibility of VDR gene variants with asthma could not be confirmed for all SNPs tested in this study, the significant association obtained for rs7975232 provides evidence for a previously unknown report about the Chinese Han population and may raise the susceptibility of VDR to be a candidate gene for asthma.</p
    • …
    corecore